## **TEE CHEMISTRY**

### **SOLUTIONS**

### Part 1

| 1. | c | 6. a  | 11. c | 16. b | 21. d | 26. c |
|----|---|-------|-------|-------|-------|-------|
| 2. | b | 7. c  | 12. b | 17. c | 22. c | 27. d |
| 3. | a | 8. c  | 13. b | 18. c | 23. b | 28. b |
| 4. | c | 9. c  | 14. b | 19. d | 24. a | 29. c |
| 5. | b | 10. b | 15. d | 20. d | 25. с | 30. d |

#### Part 2

| 1. | (a) | Equation<br>Observation | $2Na(s) + 2CH_3OH(\ell) \rightarrow H_2(g) + 2CH_3O^-(a\ell) + Na^+(a\ell)$<br>Colourless bubbles produced as the metal dissolved to produce a colourless solution                                       |
|----|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Equation<br>Observation | $Co(s) + Cu^{2+}(aq) \rightarrow Co^{2+}(aq) + Cu(s)$<br>The surface of the metal becomes coated with a black substance that<br>may become brown after some time. The blue solution slowly turns<br>pink |
|    | (c) | Equation<br>Observation | $2Na_2SO_3(s) + 2 H^+(aq) \rightarrow SO_2(g) + H_2O(\ell) + 2Na^+(aq)$<br>An acrid smelling colourless gas is produced. Very small bubbles may<br>be observed. The solid dissolves.                     |
|    | (d) | Equation<br>Observation | $2Fe^{3+}(aq) + 3S^{2-}(aq) \rightarrow Fe_2S_3(s)$<br>Black (or brown) precipitate is produced from a yellow or brown and a colourless solution.                                                        |

| 2.                                                 |                                                                                                                 |                                                               |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Species                                            | Structural formula                                                                                              | Draw shape of molecule or ion                                 |
|                                                    | showing all valence electrons                                                                                   |                                                               |
| silicate ion<br>SiO <sub>3</sub> <sup>2–</sup>     | $\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \cdot & 0 \end{bmatrix}^{2}$ | $\begin{bmatrix} 0 \\ I \\ 0 \\ S^{i} \\ 0 \end{bmatrix}^{2}$ |
| sulfur dioxide<br>SO <sub>2</sub>                  | 0::s:0:                                                                                                         | 0 <sup>S</sup> 0                                              |
| dichloromethane<br>CH <sub>2</sub> Cℓ <sub>2</sub> | С!:<br>С!С:Н<br>Н                                                                                               | $C\ell \xrightarrow{C\ell}_{H}^{C\ell}$                       |

- $\begin{array}{l} Cryolite \ or \ Na_3A\ell F_6 \\ Oxygen \ or \ O2 \end{array}$ 3. (a)
  - (b)
  - Carbon monoxide or CO (c)
  - (d) Zinc or Zn magnesium or Mg or
  - Chlorine or  $C\ell_2$  or Sulfuric acid or  $H_2SO_4$ ozone or O<sub>3</sub> (e)
  - (f)
  - Anhydrous sodium carbonate or Na<sub>2</sub>CO<sub>3</sub> (g) or

Oxalic acid dihydrate or  $H_2C_2O_4.2H_2O$ 

4. To distinguish between silver nitrate and lead nitrate solutions. 4 possible tests are described.

| TEST 1:<br>OBSERVATION: | Add NH <sub>3</sub> solution to each solution<br>Silver nitrate produces white precipitate that dissolves as more NH <sub>3</sub> is<br>added to produce a colourless solution.<br>Lead nitrate white precipitate that does not dissolves as more NH <sub>3</sub> is<br>added |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OR                      |                                                                                                                                                                                                                                                                               |
| TEST 2:                 | Add copper metal to each solution                                                                                                                                                                                                                                             |
| OBSERVATION:            | Silver nitrate produces black precipitate on the surface of the copper metal.                                                                                                                                                                                                 |
|                         | Lead nitrate produces no precipitate.                                                                                                                                                                                                                                         |
| OR                      |                                                                                                                                                                                                                                                                               |
| TEST 3:                 | Add a solution of $C\ell^-$ to each solution                                                                                                                                                                                                                                  |
| OBSERVATION:            | Silver nitrate produces a thick white precipitate that slowly darkens.<br>Lead nitrate produces a milky white precipitate that dissolves when<br>heated.                                                                                                                      |
| OR                      |                                                                                                                                                                                                                                                                               |
| TEST 4:                 | Add a solution of $SO_4^-$ to each solution                                                                                                                                                                                                                                   |
| OBSERVATION:            | Silver nitrate produces a milky white precipitate that slowly becomes pale yellow.                                                                                                                                                                                            |
|                         | Lead nitrate produces a thick white precipitate.                                                                                                                                                                                                                              |

# To distinguish between silver nitrate and lead nitrate solutions. 4 possible tests are described.

| TEST 1:<br>OBSERVATION: | Add a solution of H <sup>+</sup> to each solution<br>Sodium sulfide produces a strongly pungent gas that smells like rotten<br>eggs.<br>Sodium hydroxide produces no odour but an increase in temperature<br>may be observed. |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OR                      |                                                                                                                                                                                                                               |
| TEST 2:                 | Add water then add an amphoteric metal, metal oxide or metal hydroxide to each solution                                                                                                                                       |
| OBSERVATION:            | Sodium sulfide produces no observable change the solids remain unaffected.                                                                                                                                                    |
|                         | Sodium hydroxide produces colourless bubbles with the metal. The metal oxide and hydroxide will dissolve. The oxide may need heating.                                                                                         |

5. The dark green precipitate is chromium (III) hydroxide, Cr(OH)<sub>3</sub>, which is insoluble and produced as in the equation

 $Cr^{3+}(aq) + OH^{-}(aq) \rightarrow Cr(OH)_{3(s)}$ Dark green solid

This then reacts with further OH– to produce the chromite ion (chromium hydroxide complex ion) which is soluble and is produced as in the equation.

 $Cr(OH)_{3(s)} + OH^{-}(aq) \rightarrow [Cr(OH)_{4}]^{-}(aq)$ 

Intense deep green solution

#### **Part 3 Calculations**

(a)  $NH_{3}(aq) + H^{+}(aq) \rightarrow NH_{4}^{+}(aq)$   $m(NH_{3}) = cV = 70.0 \times 0.250 = 17.5 g$   $n(NH_{3}) = \frac{m}{M} = \frac{17.5}{17.034} = 1.027 \text{ mol}$   $[M(NH_{3}) = 27.0345 \text{ g mol}^{-1}$   $n(H_{2}SO_{4}) = \frac{1}{2}n(H^{+}) = \frac{1}{2}n(NH_{3}) = \frac{1}{2}(1.027) = 0.51368 \text{ mol}$   $m(H_{2}SO_{4}) = nM = 0.51368 \times 98.06$   $[M(H_{2}SO_{4}) = 98.076 \text{ g mol}^{-1}]$  = 50.3795 g  $M(H_{2}SO_{4})_{\text{solution}} = \frac{100}{83} \times 50.3795 = 61.438 \text{ g}$  $V(H_{2}SO_{4})_{\text{solution}} = \frac{M}{1.59} = \frac{61.438}{1.59} = \frac{38.6 \text{ mL}}{1.59}$ 

(b) 
$$2NH_4^+(aq) + SO_4^{2-}(aq) \rightarrow (NH_4)_2SO_4(s)$$
  
 $n((NH_4)_2SO_4) + \frac{1}{2}n(NH_4^+) = \frac{1}{2}NH_3 = \frac{1}{2}(1.027) = 0.51368 \text{ mol}$   
 $[M(NH_4)_2SO_4) = 132.144 \text{ g mol}^{-1}]$ 

 $m((NH_4)_2SO_4) = nM = 0.51368 \times 132.144 = 67.9 g$ 

(c) Solution would be acidic  $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ 

(a) 
$$m(C) = \frac{12.01}{44.01} \times 3.533 = 0.96412 \text{ g}$$
 %C  $= \frac{0.96413}{1.573} \times 100 = 61.29\%$ 

 $m(H) = \frac{2.016}{18.016} \times 0.7232 = 0.080926g \ \%H = \frac{0.080926}{1.573} \times 100 = 5.1447\%$ 

$$H^+ + NH_3 \rightarrow NH_4^+$$

 $\begin{array}{l} n(H^+) = n(HC\ell) = cV = 0.4201 \times 0.02367 = 9.94377 \times 10^{-3} \ \text{mol} \\ n(N) = n(NH_3) = n(H^+) = 9.94377 \times 10^{-3} \ \text{mol} \\ m(N) = nM = 9.94377 \times 10^{-3} \times 14.01 = 0.1393 \ \text{g} \end{array}$ 

%N = 
$$\frac{0.1393}{1.363} \times 100 = 10.221\%$$
  
%O = 100 - (61.293 + 5.1447 + 10.221) = 23.3413%

CHNO%
$$61.293$$
 $5.1447$  $10.221$  $23.3413$ n in 100 g $\frac{61.293}{12.01} = 5.1035$  $\frac{5.1447}{1.008} = 5.1039$  $\frac{10.221}{14.01} = 0.72955$  $\frac{23.3413}{16.00} = 1.4588$ simplest ratio $\frac{5.1035}{0.72955} = 6.995$  $\frac{5.1039}{0.72955} = 6.996$  $\frac{0.72955}{0.72955} = 1.00$  $\frac{1.4588}{0.72955} = 1.9906$ 7712

Empirical formula is C7H7NO2

(b) 
$$n(OH^{-}) = n(NaOH) = cV = 3.579 \times 10^{-3} \times 0.03533 = 1.26446 \times 10^{-4} \text{ mol}$$
  
  $n(Compound) = n(OH^{-}) = 1.26446 \times 10^{-4} \text{ mol}$ 

$$n = \frac{m}{M}$$
 therefore  $M = \frac{m}{M} = \frac{0.01734}{1.26446 \times 10^{-4}} = 137.13 \text{ g Mol}^{-1}$ 

$$M(C_7H_7NO_2) = 137.136 \text{ g mol}^{-1}$$

As the molecule mass is equal to the empirical formula mass then the molecular formula is the same as the empirical formula.

(c) Possible structures



3. (a) (i) Cathode (ii) Chromium

> (b) (ii) Anode:  $Cr \rightarrow Cr^{3+} + 3e^{-}$ Cathode:  $C^{3+} + 3e^{-} \rightarrow Cr$

(ii) 
$$q = It = 3.12 \times 20.0 \times 60 \times 60 = 224640 \text{ C}$$
  
 $n(e^{-}) = \frac{q}{96490} = \frac{224640}{96490} = 2.3281 \text{ mol}$   
 $n(Cr) = \frac{1}{3}n(e^{-}) = \frac{1}{3}(2.3281) = 0.77604 \text{ mol}$   
 $M(Cr) = nM = 0.77604 \times 52.00 = 40.354 = 40.4 \text{ g}$ 

|                 | Rough Trial | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
|-----------------|-------------|---------|---------|---------|---------|
| Initial reading | 1.32        | 20.16   | 0.69    | 19.08   | 0.02    |
| Final reading   | 20.16       | 38.78   | 19.08   | 37.86   | 18.77   |
| Volume used     |             | 18.62   | 18.39   | 18.78   | 18.75   |

(a)  $\begin{array}{cccc} BrO_{3}^{-} + 6H^{+} & 6e^{-} \rightarrow Br^{-} + 3H_{2}O \\ \hline (AsO_{3}^{3-} + H_{2}O \rightarrow AsO_{4}^{3-} + 2H^{+} + 2e^{-}) \times \\ \hline BrO_{3}^{-} + 3AsO_{3}^{3-} \rightarrow Br^{-} + 3AsO_{4}^{3-} \end{array}$ 

(b) 
$$V(BO_3^{-})_{average} = \frac{18.62 + 18.78 + 18.75}{3} = 18.72 \text{ mL}$$

$$n(BrO_{3}^{-}) = n(KBrO_{3}) = cV = 2.0732 \times 10^{-5} \times 0.01872 = 3.881 \times 10^{-7} \text{ mol}$$
  

$$n(AsO_{3}^{3-})_{in \ 20 \ \text{mL}} = 3n(BrO_{3}^{-}) = 3(3.881 \times 10^{-7}) = 1.164 \times 10^{-6} \text{ mol}$$
  

$$n(AsO_{3}^{3-})_{in \ 50 \ \text{mL water}} = n(AsO_{3}^{3-})_{in \ 250 \ \text{ml Dil water}} = \frac{250}{20} \times 1.164 \times 10^{-6} = 1.455 \times 10^{-5} \text{ mol}$$

(c) 
$$n(As)_{in 1L} = n(AsO_3^{3-})_{in 1L} = 2.911 \times 10^{-4} \text{ mol}$$
  
 $m(As)_{in 1L} = nM = 2.911 \times 10^{-4} \times 74.92 = 0.02181 \text{ g}$ 

Concentration in ppm = 
$$\frac{\text{m(As) in mg}}{\text{m(solution) in kg}}$$
 (1.00 L = 1.00 kg)  
=  $\frac{0.02181 \times 10^3}{1.00}$  = 21.8 ppm

(i)

$$n(H_2) = \frac{PV}{RT} = \frac{105 \times 877 \times 10^3}{8.315 \times 301} = 36792.57 \text{ mol}$$
  

$$n(Ni) = \frac{1}{3}n(H_2) = \frac{1}{3}(36792.57) = 12264.19 \text{ mol}$$
  

$$m(Ni) = nM = 12264.19 \times 58.69 = 719785.3 \text{ g} = 719.7853 \text{ kg}$$

% Ni = 
$$\frac{719.7956}{1000} \times 100 = 71.978\% = 72.0\%$$

(ii) 
$$[M(NH_4)_2SO_4) = 132.144 \text{ g mol}^{-1}]$$

**DX** *I* 

$$M((NH_4)_2 SO_4)_{\text{total in soln}} = 771 \times \frac{100}{85} = 907.059 \text{ kg}$$

$$n(SO4^{2-}) = n((NH_4)_2 SO_4) = \frac{m}{M} = \frac{907.059 \times 10^3}{132.144} = 6864.171 \text{ mol}$$

$$n(NiS) = n(SO_4^{2-}) = 6864.171 \text{ mol}$$

$$m(NiS) = nM = 6864171 \times 90.75 \qquad [M(NiS) = 90.75 \text{ g Mol}^{-1}]$$

$$= 622923.5 \text{ g}$$

$$= 0.6229235 \text{ tonne}$$

$$\%NiS = \frac{0.6229235}{1.00} \times 100 = 62.3\%$$

(b) 
$$n(Ni)_{in Ni matte} = n(Ni)_{total} - n(NiS)_{in Ni matte} = 12264.19 - 6864.171 = 5400.019 mol$$
  
 $n(SO_2) = n(Ni)_{in Ni matte} = 5400.019 mol$   
 $m(SO_2) = nM = 5400.019 \times 64.06$  [M(SO\_2) = 64.06 g mol<sup>-1</sup>]  
 $= 345.703.8 g$   
 $= 346 kg = 0.346 tonne$ 

For answers to the Part 4 please see the section containing <u>Extended Answer Questions</u>